Learning

- a relatively permanent change in behavior due to practice and experience

- learning:
 - is not always observed but can be hidden (*latent learning*)
 - is not always consistent
 - indicates a tendency to respond, not necessarily a specific response
 - depends on a variety of environmental and physiological factors
 - can be unintentional (*incidental learning*)

Conditioning

- the acquisition of fairly defined patterns of behavior to a well-defined stimuli
- there are two types of conditioning:
 - *classical conditioning* (as known as Pavlovian conditioning)
 - *operant conditioning* (also known as instrumental conditioning)

Classical Conditioning

- attributed to Ivan Pavlov
- occurs when an organism learns to transfer a response from one stimulus to another unlearned stimulus

Basic Elements

- *unconditioned stimulus* (UCS) : a stimulus that invariably causes an organism to respond
- *unconditioned response* (UCR) : a response or reaction to an unconditioned stimulus
- *conditioned stimulus* (CS) : a previously neutral stimulus that, when paired to the UCS, elicits a desired response in an organism when presented alone
- *conditioned response* (CR) : a response or reaction to a conditioned stimulus

Pavlov’s Experiment

- in Pavlov’s classic experiment, dogs would naturally salivate (UCR) to the presentation of food (UCS)
- by pairing the presentation of food with the sound of a bell (CS), the sounding of the bell alone would elicit salivation (CR) in the dog

Pavlov's Experiment Diagram in PowerPoint
Temporal Relationship

- the temporal relationship between the UCS and CS is important
- there are three possible relationships:
 - *forward pairing* (or *trace conditioning*): when the CS is presented before the UCS--this is the most effective method
 - *backward pairing*: when the CS is presented after the UCS
 - *simultaneous pairing*: when the CS is presented at the same time as the UCS

Other Theorists and Applications

- Watson and Rayner
 - Little Albert was conditioned to fear the appearance of a white rat (CS) by pairing it with a loud noise (UCS)
 - the response in both cases was to become fearful and cry
 - Watson and Rayner’s experiments help to show how classical conditioning can be at play with phobias
- Wolpe and Rachman
 - something frightening (a loud noise) is paired with a previously neutral stimuli (a white rat) and, after that, that stimulus (white rat) becomes the focal point for a phobia
- M.E.P. Seligman
 - believes in *preparedness*, that objects or situations toward which an individual develops a phobia are “related to the survival of the human species through the long course of evolution”
 - objects or situations that do not relate to survival are not as likely to develop into a phobia, which Seligman calls *contrapreparedness*
- Wolpe
 - *desensitization therapy*--uses classical conditioning to help the phobic individual by gradually lessening their fears of objects or events by associating them slowly with more positive or neutral thoughts and behaviors
- Mary Cover Jones
 - used a form of this therapy by treating a child to no longer be afraid of white rat
 - placed a rat in a cage in the same room as the child but fed him candy while the cage was moved closer and closer
 - ultimately, the child replaced his fear of the rat with positive feelings associated with candy.

Factors in Conditioning

- *interstimulus interval*: the time between the presentation of the UCS and the CS
 - if this is too long or too short an amount of time it can interfere with conditioning
- *intermittent pairing*: an inconsistency in the presentation of the UCS and the CS
 - this will reduce the rate and acquisition of the conditioned response
- *behavioral definition*: a clear definition of a behavior that is to be observed and/or changed through conditioning
- *habituation*: an organism’s adaptation to surrounding stimuli so that is no longer a distraction
- *extinction*: a gradual reduction in the association between the UCS and the CS, typically because they are no longer paired together to a point where the UCS and CS are no longer associated with one another
- *rest period*: when the CS is not presented with the UCS for a period of time
- *spontaneous recovery*: the instant re-association after the passage of time of the UCS and CS because of the pairing of the UCS with the CS
- *reconditioning*: occurs when the UCS and CS are again paired after extinction
- *stimulus generalization*: the response to a different but similar stimulus
- *stimulus discrimination*: the response to only a specific stimulus and not to other similar stimuli
- *response generalization*: responding in a different way but that is similar to the original response
- *sensory preconditioning*: two neutral stimuli are paired (e.g. a light and a black square) and both are paired with an UCS (e.g. food); after the initial pairing, only one of the stimuli (e.g. light) is paired with the UCS, eliciting a CR; the non-paired stimuli (e.g. black square) will still, however, elicit a CR
Higher Order Conditioning

- *higher order conditioning* (or *second-order conditioning*)
 - involves using a CS as an UCS to further condition the organism
 - in Pavlov's experiment, he used the bell as an UCS to train his dogs to salivate to the sight of a black square (the new CS)

Operant Conditioning

- Edward Lee Thorndike
 - Law of Effect
 - behaviors eliciting a pleasant effect will be "stamped in" and behaviors eliciting an unpleasant effect will be "stamped out"
- B.F. Skinner
 - *operant (or instrumental) conditioning* whereby behavior increases when a reinforcer is presented and decreases when a punishment is carried out
 - Skinner's classic experiment--a rat presses a bar in a "Skinner box" which delivers a food pellet (positive reinforcement), thereby reinforcing subsequent bar-pressing behavior.

Types of Reinforcers

- *positive reinforcer*: any event whose presence increases the likelihood of a behavior reoccurring
- *negative reinforcer*: any event whose reduction or elimination increases the likelihood of a behavior reoccurring
- *punishment*: any event whose presence decreases the likelihood of a behavior reoccurring
- *primary reinforcer*: one that is rewarding in and of itself; food and water are good examples of primary reinforcers
- *secondary reinforcer*: only has value because it is associated with a primary reinforcer; money is the most common example because it only has value because it can be traded for something the individual wants or needs.

Principles of Effectiveness

- Four principals which increase the effectiveness of a reinforcer:
 - *Principle of Size*: the larger the reinforcement, the more likely behavior will occur
 - *Principle of Immediacy*: the more immediate the reinforcement, the more likely behavior will occur
 - *Principle of Contingency*: a reinforcer becomes more effective when it is only achieved by the desired behavior
 - *Principle of Satiation*: a more an organism is deprived of a reinforcer, the more effective it becomes

Schedules of Reinforcement

- Schedules of reinforcement involve two main types:
 - *ratio schedules*--focus on a desired behavior being performed in order to receive reinforcement (e.g. having your dog roll over and giving it a treat for the behavior)
 - *interval schedules*--not concerned with the amount of desired behavior but reinforce the organism after a certain time interval (e.g. paychecks)
- There are four main schedules of reinforcement:
 - *fixed ratio*--the correspondence of behavior to reinforcement is always the same
 - *variable ratio*--the correspondence of behavior to reinforcement varies
 - *fixed interval*--the time period between reinforcement is always the same
 - *variable interval*--the time period between reinforcement varies
- it is best to start with a fixed ratio schedule of reinforcement (1:1) because the subject tends to catch on quickly (called *continuous reinforcement*)
after the behavior has been instilled, move to a variable ratio or variable interval schedule (the partial reinforcement effect states that behavior will still occur even in the absence of consistent rewards)

Factors in Conditioning
- **acquisition**: an increase in the response rate of an organism following reinforcement
- **learning curve**: a graphic representation of the rate of learning
- **shaping**: molding behavior through the use of reinforcement
- **chaining**: linking shaped behaviors together as steps in a more complex behavior
 - **forward chaining**: starting with the first step toward a desired behavior, and successively adding and reinforcing steps toward the ultimate goal
 - **backward chaining**: starting with the ultimate goal and reinforcing behavior as you add steps working backwards to the first step
- **differential reinforcement**: in shaping when an undesirable behavior is replaced by a desirable one
- **total task presentation**: when a subject succeeds at a complete series of responses for a task
- **reward and omission training**: the use of positive and negative reinforcement (respectively) in behavior modification
- **gradient of reinforcement**: the gradual ineffectiveness of a reinforcer that results with an increased delay in reinforcement following a behavior
- **extinction**: gradual reduction in behavior because of the absence of reinforcement or punishment to a condition in which a reinforced behavior is no longer present
- **spontaneous recovery**: the instant re-emergence of a behavior because of the re-initiation of reinforcement or punishment
- **tokens**: a special class of secondary reinforcers that can be accumulated and exchanged at a later date for other reinforcers
- **superstitious behavior**: the development of a superstition because the behavior or object is thought to elicit a positive reinforcer (e.g. wearing your "lucky" sweater on a test day)
- **learned helplessness**: failing to take steps to avoid a punishment because of unavoidable prior exposure to the punishment

Escape Conditioning
- **escape conditioning**: occurs when an organism learns that a response will stop an unpleasant stimulus
- **avoidance conditioning**: when an organism learns that a response will prompt an unpleasant stimulus
 - **active avoidance**: when an organism must demonstrate a specific response in order to avoid an aversive stimulus
 - **passive avoidance**: when an organism must not respond in order to avoid an aversive stimulus

Learned Taste Aversions
- **learned taste aversions**: animals and humans are biologically prepared to make certain connections more easily than others
- for example, if you ingest an unusual food or drink and then become nauseous, you will develop an aversion to it
- learned taste aversions promote powerful avoidance responses based on a single stimulus-response pairing with the pairing typically occurring up to 24 hours prior to the association
- John Garcia's classic experiment entailed putting rats into two groups
 - Group A was fed sweet water and Group B was unsweetened water accompanied by flashing lights and noise (i.e. bright-noisy water)
 - half the rats in Groups A and B were given an electric shock when they drank, the other half ingested a drug that would make them feel nauseous
 - results of classical conditioning would suggest rats in all groups would develop a learned taste aversion to their water--this was not the case
• rats in Group A that drank the sweet water and received the shock, and rats in Group B that drank bright-noisy water and ingested the nauseating drug did not show any signs of conditioning
 – the shock for rats in Group A didn’t have any connection to the water and the lights/noise for rats in Group B had no connection to the nausea
• rats in Group A that drank the sweet water and received the nausea-inducing drug did show a learned taste aversion--ingesting something and then feeling sick made sense
• rats in Group B that drank the bright-noisy water and received the shock showed an aversion as well--both were environmentally linked
• this is known as preparedness (or the Garcia effect)

Cognitive Learning
• classical and operant conditioning rely on observable behavior
• cognitive learning focuses on an organism’s mental processes in learning, including basic knowledge and understanding as well as beliefs and ideas, that cannot be observed
• an organism’s mental understanding may not be reflected in a behavior
• learning that is not immediately demonstrated by behavior is Edward Tolman’s concept of latent learning
• Tolman disagreed with Thorndike on two main points:
 – Tolman thought the Law of Effect neglected an organism’s inner drives and goals that directed its behavior
 – Tolman believed that learning occurred even before a behavior is carried out

Factors in Cognitive Learning
• cognitive map: learned mental image of a spatial environment that can be called on to solve problems when stimuli in the environment change
• insight: Learning that occurs rapidly when an organism understands all of the ingredients of a problem at once
• set: the ability to become increasing more effective in learning and problem solving
• biofeedback (or self-control): an organism’s ability to regulate bodily functions because of information that is given about the current state of those functions
• abstract learning: the ability to understand concepts rather than simple classical or operant conditioning
• insight learning: occurs when the solution to a problem becomes apparent at once after a series of unsuccessful problem solving attempts

Contingency Theory
• Robert Rescorla (1988) - relation between the UCS and CS
 – called into question the fundamental association of Pavlov’s UCS and CS
 – asserted that for learning to take place, the mere causal combination of the UCS with the CS would not lead to an association
 – the significant factor is that the CS must provide the organism with information that the UCS is likely to occur (the are contingent on one another)
 – moved the concept of association in classical conditioning from a casual combination of elements to an understanding of the relation of these elements
 – this is the definition of contingency theory, that the UCS must be contingent on the CS.

• Leon Kamin (1969) - blocking
 – called into question the concept of higher order conditioning by determining the concept of blocking
 – blocking prevents an organism from responding to a second stimulus when both the first and second stimulus occur simultaneously
 – noise (CS) was paired with an electric shock (UCS) to elicit a reaction in rats
 – a light (a second CS) was simultaneously paired with the noise in an attempt to transfer the reaction in the rats from the noise to the light
– found that the presence of just the light did not elicit a reaction in the rats; their conditioning to the noise blocked their subsequent conditioning to the light

• Overmier and Seligman (1967) - conditioned helplessness
 – discovered the concept of conditioned helplessness
 – this is when apathy and passivity occurs when one’s behavior has no effect on reward and punishment
 – college students who face a series of unsolvable problems may give up part way through the testing situation, even though later problems may be solvable

Social Learning Theory

• Albert Bandura is most known for social learning theory
• an individual can learn through *modeling* and observation without firsthand experience
• *observational* or *vicarious learning* involves learning through observing other people’s behavior

• For social learning to take place, the individual must
 1. a subject must observe and pay attention to the behavior to be modeled (*attention process*)
 2. remember the modeled behavior (*retention process*)
 3. convert the modeled behavior into action (*reproduction process*)

• it is possible to possible to pay attention and remember a modeled behavior but have no reason to convert the behavior into action
• learning can take place without actual behavior
• the motivation of the learner is important
• if someone has great success in modeling behavior, they will tend to display that behavior more often
• if they are punished for the modeling, they will not likely display that behavior again
• this is the *motivational process* is social learning.

Emotional Learning

• emotions affect our thinking
• sometimes our arousal response to one event spills over——*the spillover effect*——to the next event
• Schachter and Singer injected subjects with epinephrine which caused their hearts to race, their bodies to flush and their breathing to become more rapid
• subjects were placed in a room with a confederate who acted either euphoric or irritated
• those subjects who were told there would be a physical reaction to the shot felt no emotion, only the physiological changes
• those subjects told there would be no reaction imitated or “caught” the apparent emotion of the confederate
• subjects who pedal an exercise bike or watch rock videos will have greater feelings of anger if provoked than those who do not
• Schacter and Singer’s *two factor theory* believes: *arousal + label = emotion*
• Zajonc believes we have emotional reactions independent of our interpretations of a situation
• in one experiment, subjects who subliminally perceived a happy rather than neutral face drank about 50% more fruit-flavored drink
• those that subliminally perceived an angry face drank substantially less
• some emotions bypass the cortex to allow responses without thinking about them
• one pathway runs from the eye or ear to the thalamus to the amygdala
• the amygdala sends more neural projections to the cortex than it receives
 – feelings then can hijack our thinking
 – in a forest we’ll jump first to rustling bushes and then figure out if it was a predator or the wind
• complex emotions (guilt, happiness) are the result of interpretations and expectations
 – highly emotional people can personalize events at being directed at them and generalize
 experiences by exaggerating single incidents
• simple emotions (likes, dislikes, fears) require no conscious thought

Biological Factors
• researchers have found certain biological constraints on learning
• animals will not perform certain behaviors that go against their natural inclinations
• this tendency for animals to forgo rewards to pursue their typical patterns of behavior is called
 instinctual drift

• Eric Kandel studied neural activity in alyssia (sea snails)
• when the gills of alyssia were touched, they automatically withdrew their gills
• when the alyssia learned that this stimulation was harmless, they stopped
• habituation--when an organism adjusts to changes in stimulation or environmental conditions
• Kandel demonstrated that, as a result of habituation, alyssia would release reduced amounts of
 neurotransmitters in the brain related to the gill-withdrawal reflex

• Keller and Marion Breland attempted an experiment in which a raccoon would be conditioned to
 pick up coins and deposit them in a piggy bank
• the raccoon could be conditioned to pick up a single coin and deposit it but only after it rubbed
 the coin against the bank, clutched it and then dropped it in the bank
• attempts to condition the raccoon to pick up two coins failed
• the behavior the raccoon exhibited was consistent with its inborn tendencies to, when catching
 crayfish, rubbing the crayfish, dipping it in the water and removing its shell
• the raccoon in the Brelands’ experiment was reverting to *instinctual drift*--reverting back to basic
 species-specific behaviors

• research has indicated many factors regarding biology and its effect on human learning
• facts about the brain
 – 80% of the brain is composed of fat
 – no two brains are identical--brain size and weight can vary as much as 40%
 – each person's brain develops at its own rate

Determinants in Learning
• some students are morning learners while others are afternoon learners.
 – understanding when you are the most efficient and can concentrate the best can help you
 determine the optimum times to learn and do your homework
• learning most optimally takes place in cycles or pulses, where information is presented very
 succinctly and then the focus of learning diffuses
 – it is best, then, to study for shorter periods and take more breaks between studying

• colors affect mental alertness
 – sky blue is the most calming color, releasing some 11 neurotransmitters in the body to
 suppress appetite, lower body temperature and reduce perspiration.
 – brighter colors stimulate nervous or aggressive behavior
• peppermint, cinnamon, basil, rosemary and lemon are all aromas that may make a learner more
 mentally alert
• most information we take in (90%) is visual.

Body Physiology and Learning
• dehydration may be the cause of students who can't seem to concentrate, are bored or are
 drowsy
 – proper intake of fluids throughout the day aid in learning behavior.
• proper nutrition is essential to learning
– protein is best for alertness and mental processing because it includes a natural source of tyrosine
– we all tend to crave carbohydrates in the late afternoon and evening as our bodies attempt to store up nutrients for sleep
– men tend to want to combine these carbohydrates with protein
– women tend to want to mix their carbohydrates with fat
– it is better to eat smaller more frequent meals as too much time between eating can affect mental alertness and concentration

• proper sleep is important to learning
 – losing as little as two hours of sleep a night can result in lowered concentration and memory recall ability
• research indicates that we breath through only one nostril at a time for about three hours
 – our bodies begin the gradual shift from one nostril to the others so that we encounter about 16 ninety-minute cycles where dominance shifts from the left to the right hemisphere and then back again
 – these cycles correspond with the release of certain hormones in our blood system that affect our concentration.
 – students may want to study a variety of activities for shorter periods of time to exploit their hemispheric strengths during these cycles

AP Check

AP students in psychology should be able to do the following:

• Distinguish general differences between principles of classical conditioning, operant conditioning, and observational learning (e.g. contingencies).
• Describe basic classical conditioning phenomena, such as acquisition, extinction, spontaneous recovery, generalization, discrimination, and higher-order learning.
• Predict the effects of operant conditioning (e.g. positive reinforcement, negative reinforcement, punishment, schedules of reinforcement).
• Predict how practice (pp. 336-338), schedules of reinforcement, and motivation (p. 335) will influence quality of learning.
• Interpret graphs (graphs on pp. 319, 320, 327, 331, 334) that exhibit the results of learning experiments.
• Provide examples of how biological constraints create learning predispositions.
• Describe the essential characteristics of insight learning (p. 398), latent learning, and social learning.
• Apply learning principles to explain emotional learning (pp. 519-523), taste aversion, superstitious behavior, and learned helplessness.
• Suggest how behavior modification, biofeedback, coping strategies, and self-control can be used to address behavioral problems.
• Identify key contributors in the psychology of learning (e.g., Albert Bandura, John Garcia, Ivan Pavlov, Robert Rescorla, B. F. Skinner, Edward Thorndike, Edward Tolman, John B. Watson.)